Curriculum Subject: Maths

Subject Lead: Alison Moore

Curriculum Overview and Statement of Intent, Implementation, and Impact.

Motto

"Being the best we can be, because with God all things are possible"

'For I know the plans for you,' declares God, 'plans to prosper you and not harm you, plans to give you hope and a future.' Jeremiah 29:11

Vision \& Intent

Together, through 'The St Lawrence Way' we will embrace the love of learning, be curious of, and be inspired by the endless possibilities that our wonderful world can offer.

Mission/Implementation Through the 'St. Lawrence Way' we will....

> Design a curriculum that: recognises children's prior learning, providing first-hand learning experiences, allowing the children to build resilience and become creative, critical thinkers who have the courage to become lifelong learners fulfil their aspirations.
$>$ Recognise every child as a unique individual. We teach the children to be tolerant of one another whilst understanding and respecting difference and diversity, knowing that all have been created in the image of God.
> Help pupils and adults to develop lifelong learning habits so that they can contribute successfully to their local community and navigate an increasingly complex national and global community so that they recognise their place in the world and show thankfulness for what they have.
> Foster a Christian community whereby everyone feels valued and has a strong sense of belonging building upon strong, caring relationships that are based on mutual respect; demonstrated through courtesy, forgiveness and reconciliation.

Value the community to which we belong by listening, being honest with each other whilst showing compassion, and creating opportunities for the pupil voice to be heard, which will support good mental health and the wellbeing for all.

Intent	Our intent is for every child to develop a sound understanding of the key concepts of mathematics, equipping them with the skills of calculation, reasoning and problem solving that they will need in life beyond school. A key priority in Maths, is to ensure that children develop a strong sense of number, calculations, place value and applying these to familiar and unfamiliar contexts. This can be presented in the form of: language use; calculation work; the recognising of patterns and applications to different contexts. We believe in encouraging all children in school to become confident and brave mathematicians through challenge and high expectations. Content is appropriately differentiated to ensure good progress. 'The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematically justification, argument or proof.' - 2014 Mathematics Programme of Study
Implem	St Lawrence CE Primary uses the CPA (Conceptual, Pictorial Context, Abstract) model of teaching Maths in school. The policy draws influence from the pedagogy of the 'Maths Mastery' approach, as well as 'Signposting' and 'Reasoning within Maths'. Teaching and Learning is supported by White Rose Hub planning. Children are encouraged to take responsibility for their own learning and their successes are celebrated alongside their next steps being identified. Both quantitative and non-quantitative models are used as representations for calculations across school. This is coupled with the use of concrete manipulatives that aid the children in visualising the mathematical concepts they are exposed through during their Primary Education. The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). In certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct. We strengthen this approach through our 'Talk Time/Oracy' work in school. Concrete Pictorial Abstract \& LANGUAGE : one of the leading voices on Maths e note that CPA is NOT maths icludes "Language" as a fourth icludes "Language" as a fourth i aspect. We're a big fan of thematical terminology in lessons : built an app that tests students the language of maths.
Impact	As part of each child's journey in Maths, they are equipped with strategies, critical thinking and skills to complete tasks within the Four Domains of Problem Solving: Finding all Possibilities, Logic, Word Problems, Patterns and Rules. Our teaching and learning within these domains encompass Key Skills and Strategy Development for children; alongside Question Stems that position children and their thinking to be successful and achieve within Maths.

Class 1 - In Conjunction with White Rose Hub suggested Medium Term Plan

Year Groups: Reception (EYFS)

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Autumn	Getting to know you			Just Like me!			It's me 1, 2, 3!				Light and Dark			
Spring	Alive in 5!			Growing 6, 7, 8			Building 9 and 10				Consolidation			
Summer	To 20 and Beyond			First, then, now			Find My Pattern				On the Move			

Class 2

Year Groups: 1 and 2 (KS1)

Class 3
Year Group: 3 and 4 (LKS2)

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Autumn	Place Value	Time	Decimals (Place Value)	Number Bonds	Addition			Subtraction						
Spring	Geometry: Shape, Symmetry	Multiplication								Measure: Perimeter, Length	Division	Fractions		
Summer	Money	Statistics	Measure: Area	Geometry: Angles	Decimals	Geometry: Position, Direction								

Class 4
Year Group: 5 and 6 (UKS2)

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Autumn	Place Value			Decimals (Place Value)		$\begin{aligned} & \text { Geometry } \\ & \text { Shape } \end{aligned}$	Addition Subtraction				Multiplication Division			
Spring	Decimals		Fractions			Percentages		Algebra		Ratio		Geometry Direction	Decimals Fractions Percentages	
Summer	$\begin{aligned} & \text { Geometry } \\ & \text { Shape } \end{aligned}$	Measurement: L/C/V/M - Perimeter, Area		Four Operations		Assessment Window Consolidation Period								

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number - Count numbers to 100 in numerals; count in multiples of twos, fives and tens Autumn 1 Autumn 4 Spring 2 Summer 4	- count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward Autumn 1	- count from 0 in multiples of 4, 8, 50 and 100 ; find 10 or 100 more or less than a given number Autumn 1 Autumn 3	- count in multiples of $6,7,9,25$ and 1000 - count backwards through zero to include negative numbers Autumn 1 Autumn 4	- count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 - count forwards and backwards with positive and negative whole numbers, including through zero Autumn 1	
	- identify and represent numbers using objects and pictorial representations - read and write numbers to 100 in numerals - read and write numbers from 1 to 20 in numerals and words. Autumn 1 Autumn 4 Spring 2 Summer 4	- read and write numbers to at least 100 in numerals and in words - identify, represent and estimate numbers using different representations, including the number line Autumn 1	- identify, represent and estimate numbers using different representations - read and write numbers up to 1000 in numerals and in words Autumn 1	- identify, represent and estimate numbers using different representations - read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value Autumn 1	- read, write, (order and compare) numbers to at least 1000000 and determine the value of each digit - read Roman numerals to 1000 (M) and recognise years written in Roman numerals. Autumn 1	- read, write, (order and compare) numbers up to 10000000 and determine the value of each digit Autumn 1

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	given a number, identify one more and one less Autumn 1 Autumn 4 Spring 2 Summer 4	- recognise the place value of each digit in a two-digit number (tens, ones) - compare and order numbers from 0 up to 100; use <, > and = signs Autumn 1	- recognise the place value of each digit in a three-digit number (hundreds, tens, ones) - compare and order numbers up to 1000 Autumn 1	- find 1000 more or less than a given number - recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) - order and compare numbers beyond 1000 Autumn 1	- (read, write) order and compare numbers to at least 1000000 and determine the value of each digit Autumn 1	- (read, write), order and compare numbers up to 10 000000 and determine the value of each digit Autumn 1
		- use place value and number facts to solve problems. Autumn 1	- solve number problems and practical problems involving these ideas Autumn 1	- round any number to the nearest 10,100 or 1000 - solve number and practical problems that involve all of the above and with increasingly large positive numbers Autumn 1	- interpret negative numbers in context - round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 - solve number problems and practical problems that involve all of the above Autumn 1	- round any whole number to a required degree of accuracy - use negative numbers in context, and calculate intervals across zero - solve number and practical problems that involve all of the above Autumn 1

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs - represent and use number bonds and related subtraction facts within 20	- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems	- estimate the answer to a calculation and use inverse operations to check answers	- estimate and use inverse operations to check answers to a calculation	- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	
	Autumn 2 Spring 1	Autumn 2	Autumn 2	Autumn 2	Autumn 2	

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- add and subtract onedigit and two-digit numbers to 20, including zero	- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers	- add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers	- perform mental calculations, including with mixed operations and large numbers - use their knowledge of the order of operations to carry out calculations involving the four operations
	Autumn 2 Spring 1	Autumn 2				

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$口-9	- solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods	- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
	Autumn 2 Spring 1	Autumn 2				

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	- recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers recognise and use factor pairs and commutativity in mental calculations	- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 - recognise and use square numbers and cube numbers, and the notation for cubed (3)	- identify common factors, common multiples and prime numbers - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
		Autumn 4 Spring 1	Autumn 3	Autumn 4 Spring 1	Autumn 4	Autumn 2

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{gathered} \text { Multiplication \& Division: } \\ \text { Calculations } \end{gathered}$		- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (-) and equals (=) signs Autumn 4 Spring 1	- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods Autumn 3 Spring 1	- multiply two-digit and three-digit numbers by a one-digit number using formal written layout	- multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers - multiply and divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - multiply and divide whole numbers and those involving decimals by 10,100 and 1000 Autumn 4 Spring 1 Summer 1	- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication - divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context - perform mental calculations, including with mixed operations and large numbers Autumn 2

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	solve one-step problems involving division by calculating answer using concrete objects pictorial representations and support of the teacher	solve problems involving division, using materials, arrays repeated addition mental methods, and division facts, including problems in ontexts	solve problems including missing involving multiplication and division, including positive integer scaling problems and correspondence problems in which n to m objects	solve problems involving multiplyin and adding, including using the distributive digit numbers by one digit, integer scaling problems and harder correspondence objects are connected to m objects	- solve problems involving division including using their knowledge of factors and multiples, squares and cubes solve problems nvolving multiplication and division, including scaling by simple fractions and simple rates	
	Summer 1	$\begin{gathered} \text { Autum } 4 \\ \text { Sppring } \end{gathered}$	Spring 1	Spring 1	$\begin{gathered} \substack{\text { Autumn } \\ \text { Spping }} \end{gathered}$	Autumn 2
					- solve problems involving addition, multiplication and division and a combination of these including understanding the equals sign Spring 1	

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- recognise, find and name a half as one of two equal parts of an object, shape or quantity - recognise, find and name a quarter as one of four equal parts of an object, shape or quantity Summer 2	- recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity Spring 4	- count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 - recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators - recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators Spring 5	- count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. Spring 3	- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths - recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=$ $\left.1 \frac{1}{5}\right]$ Spring 2	
		- Recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$ Spring 4	- recognise and show, using diagrams, equivalent fractions with small denominators - compare and order unit fractions, and fractions with the same denominators Summer 1	- recognise and show, using diagrams, families of common equivalent fractions Spring 3	- compare and order fractions whose denominators are all multiples of the same number Spring 2	- use common factors to simplify fractions; use common multiples to express fractions in the same denomination - compare and order fractions, including fractions >1 Autumn 3

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- write simple fractions for example, $\frac{1}{2}$ of $6=$ 3 Spring 4	- add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$] Summer 1	- add and subtract fractions with the same denominator Spring 3	- add and subtract fractions with the same denominator and denominators that are multiples of the same number - multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams Spring 3	- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions - multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$] - divide proper fractions by whole numbers [for example, $\frac{1}{3} \div 2=\frac{1}{6}$] Autumn 3
			- solve problems that involve all of the above Spring 5 Summer 1	- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number Spring 3		

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				- recognise and write decimal equivalents of any number of tenths or hundredths - recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$	- read and write decimal numbers as fractions [for example, $0.71=\frac{71}{100}$] - recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents Spring 3	- identify the value of each digit in numbers given to three decimal places Spring 1
				- round decimals with one decimal place to the nearest whole number - compare numbers with the same number of decimal places up to two decimal places Summer 1	- round decimals with two decimal places to the nearest whole number and to one decimal place - read, write, order and compare numbers with up to three decimal places Spring 3	

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				find the effect of dividing a one- or two-digit number 10 and 100 of the digits in answer as ones, tenths and hundredths	solve problems involving number up o three decimal places	

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				- solve simple measure and money problems involving fractions and decimals to two decimal places Spring 3 Spring 4 Summer 1	- recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal - solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25 Spring 3	- associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, $\frac{3}{8}$] - recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \text { 0 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 6 \end{aligned}$	- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ $\square-9$	- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems	- solve problems, including missing number problems			- use simple formulae - generate and describe linear number sequences - express missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns - enumerate possibilities of combinations of two variables. Spring 3

Note - although algebraic notation is not introduced until Y6, algebraic thinking starts much earlier as exemplified by the 'missing number' objectives from Y1/2/3

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- compare, describe and solve practical problems for: \rightarrow lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] \rightarrow mass/weight [for example, heavy/light, heavier than, lighter than] > capacity and volume [for example, full/empty, more than, less than, half, half full, quarter] $>$ time [for example, quicker, slower, earlier, later] - measure and begin to > lengths the following: $>$ mass/weight $>$ capacity and volume $>$ time (hours, minutes, seconds)	- choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to the nearest using rulers, scales, thermometers and measuring vessels compare and order lengths, mass, volume/capacity and record the results using $>$, < and =	- measure, compare add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$)	- Convert between different units of measure [for example, kilometre to metre; hour to minute] - estimate, compare and calculate different measures	- convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) approximat and use equivalences between metric units and common imperial units such as inches, pounds and pints use all four operations to solve measure [for example, length, mass, volume, money] using decimal scaling	- solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate use, read, write and standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places convert between miles and kilometres
	Spring 3 Spring 4 Summer 6	Spring 5 Summer 4	Spring 4 Summer 4	Autumn 3 Spring 2 Summer 3	Summer 1 Summer 4 Summer 5	Spring 4

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- recognise and know the value of different denominations of coins and notes Summer 5	- recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value - find different combinations of coins that equal the same amounts of money - solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Autumn 3	- add and subtract amounts of money to give change, using both $£$ and p in practical contexts Spring 2	- estimate, compare and calculate different measures, including money in pounds and pence Summer 2	- use all four operations to solve problems involving measure [for example, money] Summer 1	

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] - recognise and use language relating to dates, including days of the week, weeks, months and years - tell the time to the hour and half past the hour and draw the hands on a clock face to show these times	- compare and sequence intervals of time - tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times - know the number of minutes in an hour and the number of hours in a day	- tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12hour and 24 -hour clocks - estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight - know the number of seconds in a minute and the number of days in each month, year and leap year - compare durations of events [for example to calculate the time taken by particular events or tasks]	- read, write and convert time between analogue and digital 12 - and 24-hour clocks - solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	- solve problems involving converting between units of time	- use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice versa
	Summer 6	Summer 3		Summer 3	Summer 4	Year 5 Summer 4

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- measure the perimeter of simple 2-D shapes Spring 4	- measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres - find the area of rectilinear shapes by counting squares Autumn 3 Spring 2	- measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres - calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm^{2}) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes - estimate volume [for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [for example, using water] Autumn 5 Summer 5	- recognise that shapes with the same areas can have different perimeters and vice versa - recognise when it is possible to use formulae for area and volume of shapes - calculate the area of parallelograms and triangles - calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}] Spring 5

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- recognise and name common 2-D shapes [for example, rectangles (including squares), circles and triangles] Autumn 3	- identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line - identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] - compare and sort common 2-D shapes and everyday objects Spring 3	- draw 2-D shapes Summer 3	- compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - identify lines of symmetry in 2-D shapes presented in different orientations Summer 5	- distinguish between regular and irregular polygons based on reasoning about equal sides and angles. - use the properties of rectangles to deduce related facts and find missing lengths and angles Summer 2	- draw 2-D shapes using given dimensions and angles - compare and classify geometric shapes based on their properties and sizes - illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius Summer 1
	- recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres] Autumn 3	- recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]. - compare and sort common 3-D shapes and everyday objects Spring 3	- make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them Summer 3		- identify 3-D shapes, including cubes and other cuboids, from 2-D representations Summer 2	- recognise, describe and build simple 3-D shapes, including making nets Summer 1

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- recognise angles as a property of shape or a description of a turn - identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; angles are greater than or less than a right angle - identify horizontal and vertical lines and pairs of perpendicular and parallel lines	- identify acute and obtuse angles and compare and order angles up to two right angles by size - identify lines of symmetry in 2-D shapes presented in different orientations complete a simple symmetric figure with respect to a specific line of symmetry	- know angles are measured in degrees estimate and compare acute, obtuse and reflex angles - draw given angles, and measure them in degrees - identify: > angles at a point and one whole turn (total 360°) > angles at a point on a straight line and $\frac{1}{2}$ a turn (total 180°) > other multiples of 90°	- find unknown angles in any triangles, quadrilaterals, and regular polygons - recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
			Summer 3	Summer 5	Summer 2	Summer 1

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- describe position, direction and movement, including whole, half, quarter and three-quarter turns	- order and arrange combinations of mathematical objects in patterns and sequences - use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise) Spring 3 Summer 1		- describe positions on a 2-D grid as coordinates in the first quadrant - describe movements between positions as translations of a given unit to the left/right and up/down - plot specified points and draw sides to complete a given polygon	- identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	- describe positions on the full coordinate grid (all four quadrants) - draw and translate simple shapes on the coordinate plane, and reflect them in the axes
	Summer 3			Summer 6	Summer 3	Autumn 4

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- interpret and construct simple pictograms, tally charts, block diagrams and simple tables Spring 2	- interpret and present data using bar charts, pictograms and tables Spring 3	- interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs Summer 4	- complete, read and interpret information in tables, including timetables Autumn 3	- interpret and construct pie charts and line graphs and use these to solve problems Summer 3
		- ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity - ask and answer questions about totalling and comparing categorical data Spring 2	- solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables Spring 3	- solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs Summer 4	- solve comparison, sum and difference problems using information presented in a line graph Autumn 3	- calculate and interpret the mean as an average Summer 3

